◎学习与工作经历 2007.9-2011.7,中国石油大学(华东),石油工程学士; 2011.9-2013.7,中国石油大学(华东),油气田开发工程硕士; 2013.9-2017.12,中国石油大学(华东),油气田开发工程博士; 2015.9-2016.9,Pennsylvania State University,博士联合培养; 2018.8-2021.8,中国石油大学(华东),力学博士后流动站师资博士后; 2021年8月至今,中国石油大学(华东),特任副教授
◎研究方向 (1)油藏数值模拟与开发优化技术 (2)非常规油气开发 (3)机器学习/人工智能
◎学术兼职 Fuel、International Journal of Coal Geology、Journal of Natural Gas Science and Engineering、Journal of Cleaner Production、Transport in Porous Media、Energy Fuel等国内外顶级期刊审稿人
◎指导研究生 协助指导博士、硕士研究生7名。 博士研究生:马瑞帅 硕士研究生:王佳茗、吴宽宽、谢泽豪、杜鹏、张斌、杨金朝
◎承担科研课题 承担国家自然科学基金、国家科技重大专项、国家973等纵向课题和油田委托课题30余项,代表性课题包括: 一、非常规油气开发方向 1.基于PFM-CFD方法的深部煤层流固互馈作用机理研究,国家自然基金青年基金(主持,在研) 2.基于微观网络模拟的煤岩裂隙流动参数动态变化规律,中国博士后基金面上项目(主持,结题) 3.深部煤层气水赋存及运移产出规律研究,中央高校自主创新基金(主持,在研) 4.基于微观网络模拟的煤岩孔渗动态演化规律研究,中央高校自主创新基金(主持,结题) 5.煤岩孔渗动态变化及气水流动规律实验,中石油勘探开发研究院横向课题(主持,结题) 6.煤岩渗流特征模拟等实验,中石油勘探开发研究院横向课题(主持,结题) 7.二氧化碳强化页岩气开采流固耦合作用机理及数值模拟,国家自然基金面上项目(第二负责人,在研) 8.页岩油流动机理与开发优化的基础理论研究,国家自然科学基金联合基金重点项目(骨干,在研) 9.煤储层气水两相受限赋存输运规律及数值模拟研究,国家自然科学基金面上项目(骨干,在研) 10.煤层气藏数值模拟技术及软件开发,国家科技重大专项(骨干,结题) 11.煤储层气水赋存、产出动力机制及排采控制数学模型建立,华北油田课题(技术负责人,在研) 二、油气开发人工智能方向 1.深层碎屑岩油藏注气优化评价技术研究,中石油重大科技项目(任务负责人,在研) 2.缝洞型碳酸盐岩油藏氮气吞吐注气参数优化与效果预测,山东瑞恒兴域石油技术公司(主持,在研) 3.老油田高效井位优选及样本正演模块测试,中石化胜利油田横向课题(主持,在研) 4.整装油田典型单元流场转换技术应用及跟踪分析,中石化胜利油田横向课题(主持,结题) 5.基于机器学习的复杂断块油藏剩余油预测方法,胜利油田横向课题(骨干,在研)
◎获奖情况 1.2018年山东省优秀博士学位论文 2.2019年石油工程学院贡献奖 3.2012、2014、2015年度研究生国家奖学金
◎论文 共发表学术论文20余篇,其中以第一作者或通讯作者发表SCI/EI论文14篇,代表作包括(*为通讯作者): (1)非常规油气开发方向 [1]J. Zhang, Q. Feng*, et al., 2020.A two-stage step-wise framework for fast optimization of well placement in coalbed methane reservoirs. International Journal of Coal Geology, 225, 103479. SCI一区TOP [2]Q. Feng, J. Zhang*, et al., 2014. The use of alternating conditional expectation to predict methane sorption capacity on coal. International Journal of Coal Geology, 121, 137–147. SCI一区TOP [3]Q. Feng, J. Zhang*, X. Zhang, et al., 2012. Optimizing well placement in a coalbed methane reservoir using the particle swarm optimization. International Journal of Coal Geology, 104, 34-45.SCI一区TOP [4]J. Zhang, Q. Feng*, X. Zhang, et al., 2020. Multi-fractured horizontal well for improved coalbed methane production in eastern Ordos basin, China: Field observations and numerical simulations. Journal of Petroleum Science and Engineering, 194, 107488. SCI二区TOP [5]J. Zhang, Q. Feng*, et al., X. Zhang, 2015. Relative permeability of coal: A review. Transport in Porous Media, 106(3),563-594. SCI三区 [6]J. Zhang, B. Zhang, S. Xu, et al., 2021. Interpretation of gas/water relative permeability of coal using the hybrid Bayesian-assisted history matching: New insights. Energies, 14(3), 626. SCI三区 [7]Q. Feng, Jiaming Wang, J. Zhang*. Data-driven modeling of the methane adsorption isotherm on coal using supervised learning methods: a comparative study. 2021 International Conference on Modeling, Big Data Analytics and Simulation. EI (2)油气开发人工智能方向 [1]J. Zhang, Y. Sun, L. Shang*, 2020. A unified intelligent model for estimating the (gas+n-alkane) interfacial tension based on eXtreme gradient boosting (XGBoost) trees. Fuel,282, 118783. SCI一区TOP [2]J. Zhang, Q. Feng*, et al., 2015. The use of an artificial neural network to estimate natural gas/water interfacial tension. Fuel, 157, 28-36.SCI一区TOP [3]Q. Feng, J. Zhang*, et al., 2015. Proximate analysis based prediction of gross calorific value of coals: A comparison of support vector machine, alternating conditional expectation and artificial neural network. Fuel Processing Technology, 129, 120-129.SCI二区TOP [4]J. Zhang, Q. Feng*, X. Zhang, et al., 2016. Estimation of CO2-brine interfacial tension using an artificial neural network. Journal of Supercritical Fluids, 107, 31-37. SCI二区 [5]J. Zhang, Q. Feng*, X. Zhang, et al., 2020. A supervised learning approach for accurate modeling of CO2–brine interfacial tension with application in identifying the optimum sequestration depth in saline aquifers. Energy Fuels, 34(6), 7353–7362. SCI三区 [6]J. Zhang, Q. Feng*, X. Zhang, et al., 2020. A novel data-driven method to estimate methane adsorption isotherm on coals using the gradient boosting decision tree: A case study in the Qinshui Basin, China. Energies, 13, 5369. SCI三区 [7]J. Zhang, Q. Feng*,2020. The use of machine learning methods for estimation of CO2-brine interfacial tension: a comparative study. 2020 International Conference on Machine Learning Technology. EI
◎专利 1.一种煤层损失气量测定方法、系统、存储介质、终端,国家发明专利,排名第1 2. 气体高压等温吸附曲线预测方法、系统、存储介质、终端,国家发明专利,排名第1 3. 地下自生CO2泡沫吞吐开采煤层气的系统及方法,ZL201610459373.4,排名第4 4. 一种煤层气井多元热流体强化开采方法,ZL201310032766.3,排名第3 5. 一种多元热流体泡沫驱替煤层气开采方法,ZL201310030969.9,排名第4 6. 饱和水条件下煤岩等温解吸曲线测定装置及方法,ZL201410403179.5,排名第3 7. 一种煤页岩等温吸附/解吸曲线的测定方法,ZL201310030953.8,排名第3 8. 水驱油藏注采动态调控的逐级劈分优化方法,国家发明专利,排名第4
◎学术交流 1. Advances in the flow principles and production optimization of shale oil. 2018 International Symposium on Unconventional Geomechanics, Qingdao, China. 非常规地质力学大会主题报告 2. Effects of cleat geometry of coal on permeability evolution: a pore-scale network modeling approach, Interpore Annual Conference, 2017, Amsterdam, Netherlands. 3. Flow mechanisms and development technologies of tight oil reservoirs, Unconventional Geomechanics Conference, 2018, Qingdao, China. |