当前位置: 海洋油气与水合物研究所
王锴
作者: 发布者:赵小明 发布时间:2024-06-28 访问次数:10168

职称:副教授

单位:海洋油气与水合物研究所

最高学历/学位:博士研究生

学科:海洋油气工程学科,石油与天然气工程

所学专业:

电子邮箱:wangkai@upc.edu.cn;wangkai512126@126.com

联系电话:1315622869

地址邮编:山东省青岛市经济技术开发区长江西路66号,石油工程学院,海洋油气工程系,266580

  • 个人主页
  • 学习与工作经历
    [1] 2016.7-至今,中国石油大学(华东),讲师,副教授
    [2] 2018.5-2019.5,University of Calgary,博士后
    [3] 2011.9-2016.7,北京师范大学,博士
    [4] 2007.9-2011.7,华北电力大学,学士
  • 研究方向
    [1] 海洋油气工程信息与智能技术
    [2] 海洋油气井完整性监测及智能化
    [3] 含固体颗粒多相流测量技术



  • 招生方向
  • 主讲课程
    [1] 《现代海洋油气工程》
    [2] 《海洋工程作业安全》
    [3] 《海洋油气技术进展》
    [4] 《深水油气工程理论与技术进展》
    [5] 《井筒安全检测》



  • 学术兼职
    [1] 国家自然科学基金函评人(冶金与矿业、海洋工程)
    [2] 教学部学位中心论文网评人
    [3] 国家留学基金委公派留学项目网评人
    [4] 北京市自然基金函评人
    [5] 研究生学位论文网评人
    [6] 山东省科技专家库技术研发专家
    [7] 青岛市科技专家库专家
    [8] CNKI评审专家库专家
    [9] 期刊主题编辑:《Energies》(SCI)、《Geosciences》(SCI)、《Minerals》(SCI)、《Applied Sciences-Basel》、《Geotechnics》
    [10] 期刊青年编委:《Deep Underground Science and Engineering》(EI)、《机械科学与技术》(中文核心)、《油气储运》(中文核心)
    [11] 《Mechanical Systems and Signal Processing》、《SPE Journal》、《IEEE Transactions on Instrumentation & Measurement》、《Powder Technology》、《Measurement》、《Journal of Natural Gas Science and Engineering》、《Journal of Petroleum Science and Engineering》、《Applied acoustic》、《Ocean Engineering》、《Biomaterials》、《Physics of fluids》、《Computer Systems Science and Engineering》、《Flow Measurement and Instrument》、《IEEE Access》、《Journal of Petroleum Exploration and Production Technology》、《Intelligent Automation & Soft Computing》、《Shock and vibration》、《Journal of Dispersion Science and Technology》等20余种SCI期刊审稿人。
  • 指导研究生
    [1] 博士生(副导师):王刚(中国石油工程设计大赛二等奖)、李祎宸(中国研究生能源装备大赛二等奖)
    [2] 硕士生(24级):王子彪(优秀本科毕业设计)、王志远
    [3] 硕士生(23级):田佳棋(优秀本科毕业设计、中国石油工程设计大赛三等奖)、鲁佳琦
    [4] 硕士生(22级):常子昂(研究生国家奖学金、优秀本科毕业设计、中国研究生能源装备大赛二等奖、中国石油工程设计大赛三等奖)
    [5] 硕士生(20级):胡轶男(研究生国家奖学金)
    [6] 硕士生(协助):张家林(研究生国家奖学金)、冯凯、杜佳诚、穆文军、刘冰等
  • 承担科研课题
    [1] 水下采油树完整性管理及出砂探测与冲蚀设计与分析,技术开发,2023-2025
    [2] 微砂粒碰撞输油管壁瞬态振动响应机理与含砂量表征方法,重点实验室开放基金,2024-2025
    [3] 深水油气及可燃冰工况钛合金油套管管柱设计及应用研究,山东省重大创新工程,2023-2025
    [4] 单筒双井表层套管下入挂碰模拟研究,技术服务,2024-2024
    [5] 海上中深层油藏高效开采技术,技术服务,2023-2023
    [6] 数字化转型关键技术,技术服务,2023-2023
    [7] 基于多频碰撞响应驱动的深水气井出砂定量识别方法研究,国家自然基金,2022-2024
    [8] 深水气井出砂诱发多频碰撞响应机理及砂粒径反演方法,山东省自然基金,2022-2024
    [9] 钻头振动信号传收与信噪处理方法及样机开发,技术服务,2022-2024
    [10] 复杂井筒多相流动安全保障技术研发,广东省自然资源厅,2021-2023
    [11] 基于流量监测的溢漏早期发现系统,技术开发,2021-2022
    [12] 一种非植入式稠油油井出砂量监测系统及其方法,技术开发,2019-2024
    [13] 生产井出砂在线监测系统研究,技术开发,2018-2020
    [14] 深水钻完井工程风险预警及管控,国家重点基础研究发展计划(973计划),2015-2019
    [15] 乐东气田A9/A10调整井防碰地面监测及预警系统服务,技术服务,2018-2018
    [16] 基于液固两相流动撞击管壁诱发振动信号的油井出砂特性识别研究,山东省自然基金,2017-2019
    [17] 油井出砂撞击管壁激发振动信号特性表征与识别研究,中央高校基本科研业务专项,2017-2019
    [18] 深水气田钻井期间水合物堵塞机理及预防方法研究,中央高校基本科研业务专项,2017-2019
    [19] 基于振动方法的气-砂两相流中固相检测研究,中国石油大学(华东),2017-2019
    [20] 恩平23-1油田群防碰预警技术服务,技术服务,2016-2017
    [21] 海上丛式井防碰监测先导项目,技术开发,2015-2015
    [22] 海上稠油油田适度出砂地面监测技术及装置研究,国家科技重大专项,2011-2015
    [23] 海上油田丛式井多平台钻井趋近井筒监测方法,国家科技重大专项,2011-2015
    [24] 加密井网防碰工程技术示范,国家科技重大专项,2011-2015
  • 获奖情况
    [1] 2024年,凡科评审质量研究院,研究生学位论文优秀评审专家
    [2] 2023年,中国发明协会一等奖,海上油气井筒振动监测预警技术创新及装备研发,1/6
    [3] 2023年,中国石油大学(华东),师德考核优秀
    [4] 2023年,中国石油大学(华东),优秀本科毕业设计指导教师
    [5] 2022年,中国石油大学(华东),优秀工会干部
    [6] 2022年,中国石油大学(华东),优秀本科毕业设计指导教师
    [7] 2021年,中国石油大学(华东),优秀工会干部
    [8] 2021年,中国石油大学(华东),师德考核优秀
    [9] 2021年,中国石油大学(华东),年度考核优秀
    [10] 2021年,中国石油工程设计大赛,优秀指导教师
    [11] 2020年,中国石油大学(华东),优秀工会会员
    [12] 2020年,beplay安装 ,年度贡献奖
    [13] 2019年,中国石油大学(华东),年度考核优秀
    [14] 2018 年,中国石油和化学工业联合会,科技进步二等奖
    [15] 2017 年,北京师范大学,优秀博士学位论文
    [16] 2017 年,国家留学基金委,创新型人才国际合作培养博士后奖学金
    [17] 2017 年,中国石油大学(华东),青年教师上岗培训优秀
  • 荣誉称号
  • 著作
    [1] 专业必修课教材《海洋油气钻井工程》,中国石油大学出版社,2022年,参与.
  • 论文
    部分SCI收录论文:
    [1] Measuring solid particles in sand-carrying gas flow using multiscale vibration response statistics and deep learning algorithms, Mechanical Systems and Signal Processing, 209 (2024) 111103.
    [2] Sand particle characterization and identification in annular multiphase flow using an intelligent method, Physics of Fluids, 36 (2024) 013306.
    [3] Analysis of the particle characteristics of solid-liquid turbulent flow by triaxial vibration statistic and machine learning methods, Powder Technology, 2024, 436:119464.
    [4] Solid particle size characterization by a high-frequency collision response in pneumatic particulate flow, Particuology, 86 (2024) 39-54.
    [5] A sand particle characterization method for water-bearing high-production gas wells based on a multifrequency collision response, Natural Gas Industry B, 11 (2024)154-169.
    [6] Triaxial vibration response performance characteristics of solid particles in elbows under slurry flow conditions, IEEE Transactions on Instrumentation & Measurement, 72(2023)1004215.
    [7] The fusion of deep learning and acoustic emission response methods for identifying solid particles in annular multiphase flows, Geoenergy Science and Engineering, 225 (2023) 211685.
    [8] Experimentally Investigating Sand Particle Characteristics Under Annular Multiphase Flow Conditions Using a Triaxial Vibration Method, SPE Journal, 28 (2023) 697-714.
    [9] Tripability Analysis of Casing Strings in Directional Wells Using the Continuous Beam-Col umn and Buckling Theory, Geofluids, (2022) 1-15.
    [10] Multi-scale characterization and identification of dilute solid particles impacting walls within an oil-conveying flow with an experimental evaluation by dual vibration sensors, Chemical Engineering Journal, 416 (2021) 129173.
    [11] Multi-frequency characterization of particle-wall interactions in a solid-liquid dispersion conveying pipe flow using a non-intrusive vibration detection method, Chemical Engineering Journal, 413 (2021) 127526.
    [12] A leakage particle–wall impingement based vibro-acoustic characterization of the leaked sand–gas pipe flow, Particuology, 55 (2021) 84-93.
    [13] Experimental Investigations of Offshore Sand Production Monitoring Based on the Analysis of Vibration in Response to Weak Shocks, Geofluids, (2021) 1-17.
    [14] Experimental evaluation of rock disintegration detection in drilling by a new acoustic sensor method, Journal of Petroleum Science and Engineering, 195 (2020) 107853.
    [15] Study of the optical properties of a square polycapillary slice, Optics Communications, 430 (2019) 139-142.
    [16] An investigation of the detection of acoustic sand signals from the flow of solid particles in pipelines, Chemical Engineering Research and Design, 144 (2019) 272-284.
    [17] Identification and characterization of solids in sand-water two-phase flows via vibration multi-sensor approaches, Advanced Powder Technology, 30 (2019) 2240-2250.
    [18] Vibration multisensor fusion method for the identification and characterization of sand particles in dispersions of oil in water flow, Powder Technology, 352 (2019) 227-239.
    [19] Non-intrusive characterization of sand particles dispersed in gas–water bubbly flow using straight and bent pipes with vibration sensing, Powder Technology, 344 (2019) 598-610.
    [20] Vibration sensor approaches for experimental studies of sand detection carried in gas and droplets, Powder Technology, 352 (2019) 386-396.
    [21] Vibration and acoustic signal characteristics of solid particles carried in sand-water two-phase flows, Powder Technology, 345 (2019) 159-168.
    [22] Experimental evaluation of sand particle identification in oil–water–gas multiphase flows based on vibration signal analysis, Chemical Engineering Research and Design, 151 (2019) 79-90.
    [23] Vibration sensor method for the identification of solid particle leakage from gas pipe flow based on particle-wall interaction, Powder Technology, (2019).
    [24] Simulation of X-ray transmission and spatial imaging of polycapillary lenses with square cross-sections, Optics Communications, 420 (2018) 205-210.
    [25] Analysis of signal characteristics from rock drilling based on vibration and acoustic sensor approaches, Applied Acoustics, 140 (2018) 275-282.
    [26] Investigation of anodic plasma electrolytic carbonitriding on medium carbon steel, Surface and Coatings Technology, 313 (2017) 288-293.
    [27] Acoustic sensor approaches for sand detection in sand–water two-phase flows, Powder Technology, 320 (2017) 739-747.
    [28] The surface morphology analysis based on progressive approximation method using confocal three-dimensional micro X-ray fluorescence, Spectrochimica Acta Part B: Atomic Spectroscopy, 122 (2016) 127-131.
    [29] The three-dimensional elemental distribution based on the surface topography by confocal 3D-XRF analysis, Applied Physics A, 122 (2016).
    [30] Combining depth analysis with surface morphology analysis to analyse the prehistoric painted pottery from Majiayao Culture by confocal 3D-XRF, Applied Physics A, 122 (2016).
    [31] Vibration sensor approaches for the sand detection in gas–sand two phases flow, Powder Technology, 288 (2016) 221-227.
    [32] Property of slice square polycapillary x-ray optics, Chinese Physics B, 25 (2016) 024102.
    [33] A new background subtraction method for energy dispersive X-ray fluorescence spectra using a cubic spline interpolation, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 775 (2015) 12-14.
    [34] Vibration Sensor Approaches for the Monitoring of Sand Production in Bohai Bay, Shock and Vibration, 2015 (2015) 1-6.
    [35] Vibration sensor approaches for sand detection in oil–water–sand multiphase flow, Powder Technology, 276 (2015) 183-192.
    [36] Numerical Simulation of Polycapillary X-ray Lens, Acta Optica Sinica, 35 (2015) 0234001.
    [37] Simulation of transmitted X-rays in a polycapillary X-ray lens, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 795 (2015) 186-191.
  • 专利
    发明专利(第一发明人):
    [1] 基于多传感器的管道含砂量检测装置,ZL202010103895.7,2022.10.21.
    [2] 气井出砂检测实验装置,ZL111257177A,2022.06.07
    [3] 油气管道出砂量监测实验装置及监测方法,ZL2017105795460,2020.07.03
    [4] 深水油气井水下出砂监测装置及监测方法,CN111305814A,2020.06.19
    [5] 一种用于采油井的套管漏点深度检测方法和装置, ZL201611135961.9,2019.11.26.
    [6] 一种丛式井井间距离测量方法, ZL201710674338.9,2019.05.17.
    [7] 一种非植入式稠油油井出砂量监测系统及其方法, ZL201610047626.7,2018.12.28.
    [8] 多相流管道泥砂颗粒含量与冲蚀监测预警装置及方法,CN 202211095966.9, 2022.09.08.
    [9] 水下井口输气管道砂粒粒径分布检测系统及方法, CN202211062146.X,2022.09.01.
    [10] —种气井出砂信息智能识别和预测方法,CN202311153876.5, 2023.09.08.


    软件著作权:
    [1] 气-液两相流输运管道泥砂颗粒含量检测软件,2020SR1793580,2020.
    [2] 颗粒高速冲击平板诱发的振动响应监测软件,2020SR1793579,2020.
    [3] 生产井出砂在线检测软件,2020SR0168730,2019.
    [4] 海上油田适度出砂监测软件,2015SR194011,2015.
    [5] 海上油田从式井网整体加密调整多平台钻井趋近井筒监测软件,2015SR099291,2015.
    [6] 深水气井出砂监测软件,2023R11L084293, 2023
    [7] 复合材料储氢瓶结构完整性与安全实时监测软件,2024SR0077209,2024
    [8] 微型芯片封装体缺陷智能监测与识别软件,2024SR0077228,2024
    [9] 自适应热位移重载调节平台控制与监测软件,2024SR0077185,2024

  • 学术交流
    [1] Non-intrusive Identification of Offshore Sand Production in Water-gas Pipe Flow Via Acoustic Sensing Method [C]. The 29th International Ocean and Polar Engineering Conference, 美国,2019.
    [2] Non-intrusive Measurement of Sand Production in Boyhai Bay Using Vibration Sensor Method[C]. SPE Europe featured at 79th EAGE Conference and Exhibition, 12-15 June, 法国,2017.
    [3] Non-Intrusive Measurement of Offshore Sand Production Using Vibration Sensor Method and Its Laboratory Evaluation[C]. The 27th International Ocean and Polar Engineering Conference, 25-30 June, San Francisco, California,美国,2017.
    [4] Monitoring Solid Phase in Oil-Water-Sand Multiphase Flow in Impact Parts Based on Acoustic Emission Sensor Technology[C]. ICAET, 16-18December, Incheon, 韩国,2016.
  • 个人风采
    招生方向(学术型、专业型):
    (1) 海洋油气工程理论与技术
    (2) 油气工程信息与智能技术
    (3) 油气井工程理论与技术


    热烈欢迎:
    海洋油气工程、石油工程、油气储运工程、机械类、计算机类、自动化类、电子信息等理工科专业本科生加入本团队!


Baidu
map